Volume 2 Issue 5

EXPERIMENTAL INVESTIGATION OF A SOLAR FLAT PLATE COLLECTOR

Jayesh V. Bute¹, Dr. S. C. Kongre²

¹Student-MTech (HPE), Department of Mechanical Engineering, Shri Shankarprasad Agnihotri College of Engineering, Wardha, ²H.O.D Department of Mechanical Engineering, A.S.T.S, Pipri, Wardha, Maharashtra, India

¹jayeshbute@rediffmail.com, ²suhas kongre@rediffmail.com

ABSTRACT:

In growing energy consumption scenario, to reduce the burden on conventional energy sources, non conventional energy sources like solar energy wind energy is getting importance. In this project we deals with solar energy. The development of sustainable energy services like the supply of heating water may face a trade-off with a comfortable quality of life, especially in the winter season where suitable strategies to deliver an effective service are required. Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in water heating systems. A commonly used solar collector is the flat-plate. A lot of research has been conducted in order to analyze the flat-plate operation and improve its efficiency.

This study investigates the heat transfer process as well as the thermal behaviour of a flat plate collector evaluating different configurations of Tubes. This study investigates the heat transfer process as well as the thermal behaviour of a flat plate collector evaluating different configurations of Tubes. The main objective of this research is to evaluate the performance of solar flat plate collector with tube arrangement, through experimentation, theoretical formulation and its computational analysis of heat transfer.

Index Terms: Solar flat plate collector, Heat Transfer, Riser tube, Water heating.

1. INTRODUCTION

Using the sun's energy to heat water is not a new idea. More than one hundred years ago, black painted water tanks were used as simple solar water heaters in a number of countries. Solar water heating technology has greatly improved during the past century. Today there are more than 30 million m2 of solar collectors installed around the globe. Hundreds of thousands of modern solar water heaters, are in use in countries such as China, India, Germany, Japan, Australia and Greece. In fact, in some countries the law actually requires that solar water heaters be installed with any new residential construction project (Israel for example).

Harnessing the sun radiant energy as a clean and renewable source of energy has proven to be a challenge over the centuries and in modern times has fallen off in favours of other technologies which are easier to commercialize and capitalize on. The last few decades have shown exponential increases in the energy demands and consumption patterns of many countries, which have opted to meet this challenge with more conventional means such as fossil fuel.

In addition to the energy cost savings on water heating, there are several other benefits derived from using the sun's energy to heat water. Most solar water heaters come with an additional water tank, which feeds the

E-ISSN No:2349-0721

Volume 2 Issue 5

conventional hot water tank. Users benefit from the larger hot water storage capacity and the reduced likelihood of running out of hot water. Hot water is essential both in industries and homes. It is required for taking baths, washing clothes and utensils, and other domestic purposes in both the urban and rural areas. Hot water is also required in large quantities in hotels, hospitals, hostels, and industries such as textile, paper, and food processing of dairy and edible oil. Solar water heating systems can heat water from ambient temperature to temperatures over 90 °C depending on the collector type employed in a given locality. Using solar collector to heat the water can easily attain required temperatures.

As a consequence of the increase in the world's population, human development, the increase in individual income and the aspiration for more comfortable life styles, power consumption has increased significantly over the last three decades and this can be reduced by increasing the percentage of energy generated from clean resource like solar energy. Research involving clean sources of energy such as solar energy, has increased significantly over the last four decades, particularly after the World Oil Crisis in 1973 .Solar energy can be used in the industrial, commercial and domestic sectors. In the domestic applications like water heating, lighting and other applications. An economic and efficient system is required to encourage households to use solar water heating. The solar collectors are devices which capture the solar energy and transfer it into thermal energy that increases the internal energy in the fluids, and hence increases their temperature. There are several types of solar collectors, including the flat plate collector, evacuated tube, parabolic trough, central receiver and dish concentrator. In this project study is focused on solar flat plate collector.

The focus of the present work is on investigates the heat transfer process as well as the thermal behavior of a flat plate collector evaluating different configurations of Tubes. The main objective of this research is to evaluate the performance of solar flat plate collector with zigzag tube arrangement, through the construction, experimentation, theoretical formulation and its computational analysis of heat transfer.

E-ISSN NO.2349-0721

2. Experimental Procedure

2.1 The set-up

The schematic diagram of the solar flat collector along with the tank under consideration is shown in Fig 2.1, along with thermocouple locations. The flat plate collector is mounted inclined 450 and facing north south near to 100 litters tank. The experiment part consists of a 2.0 m2 of flat plate collector which is having the six numbers of riser tubes of outer diameter 1.27 cm made up from the copper with a length of 6 feet and a wall thickness of 1.2 cm. These riser tubes are consists of a copper heat collecting surfaces of thickness 0.20 mm. The wall temperature distribution of the riser pipe of collector plate measured using K-type thermocouples with an uncertainty of ± 0.1 oC.In addition the temperature of water flowing inside the tubes are also measured with the help of digital thermo meter. The riser pipe is connected with the copper tubes of outer diameter 5mm (drawn outside from the collector panel). This outside drawn copper tubes are attached with the valve by means of flaring nut for measuring the pressure inside each riser tubes. The pressure gauge used for measure the pressure inside the tubes is attached to the valve through charging cable.

Fig.2.1 Solar Flat Plate collector water Heater with straight riser tube

The difference between the earlier straight riser tube collector and new zigzag riser tube collector is the riser tube configuration shown in fig.2.2.Although it serves the same functions the physics is different from the conventional one. In this collector the heat transfer heat is conducted from the fins to the zigzag riser tube first and then convection to the fluid from to the zigzag riser tube. Whereas in the conventional collector the heat is conducted from the fins to the straight riser tube first and then convection to the fluid from the tube takes place. This work is primarily concerned with the possibility of replacing the conventional straight riser tube with zigzag riser tube. So, only the important practical parameters like the steady state outlet temperatures and the pressure drop can be compared.

Fig.2.2 Solar Flat Plate collector with zigzag riser tube

2.2 Experimental Procedure

The experiments are conducted using riser tube of solar flat plate collector. The solar flat plate collector is initially, started with water flow rate of 1 liter per minute and which is gradually increasing step wise for conducting the experiment. When water from the tank comes into the solar flat collector the inlet temperature of water is recorded with help of thermocouple.

The water from the tank first comes into the footer pipe and then gradually lifted up as heating due to sun, and decreasing in the densities of water. The temperature of water within each tubes are recorded by the digital thermometer and also the pressure inside the tubes were recorded with help of pressure gauge. This process is continued for all four riser with straight riser tube and zigzag riser tubes. Similarly same reading is noted down for different flow rate water entering and the leaving the collector and different time duration.

E-ISSN No:2349-0721

Volume 2 Issue 5

Finally the results which are obtained from experiments are analysed for conclusion.

2.3 The specification of a typical 100 litres capacity thermosyphon system is given below:

FLAT PLATE COLLECTOR

Gross Area : 2 m2

Cover : Toughened glass, single, 4 mm thick

Absorber Plate : Copper sheet (0.20mm thick) with selective coating

Riser for water flow : Copper tubes (1.27cm) 4 numbers

Tube centre to centre distance: 120mm

Casing : extruded aluminium section with aluminium sheet on back side.

Side insulation : 25mm thick glass wool

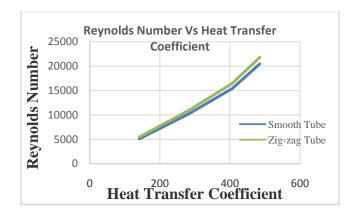
Bottom insulation : 50mm thick glass wool

2.4 STORAGE TANK

Shape : Cylindrical shape with axis horizontal made from SS 304(1.2mm thick)

Capacity: 100 litters

Insulation : 100mm thick glass wool on all side


.3. Result

The experiments were carried out on the test rig initially smooth tube without using any inserts and the different heat transfer characteristics were calculated and then the same is done using twisted tape inserts.

3.1 Graphs

Based on the above calculations following graphs are plotted for interpretation of performance

- Heat transfer coefficient Vs Reynolds No.
- □ Nusselt No. Vs Reynolds No.
- ☐ Frication factor Vs Reynolds No.

3.2 Effect of Reynolds Number on Heat Transfer Coefficient

The experimentation was carried out with the straight tube and zigzag riser tube in Passive heat transfer enhancement methods. Heat transfer coefficient and friction factors are calculated for all cases. Parameters were plotted for Reynolds no. and mass flow rate..

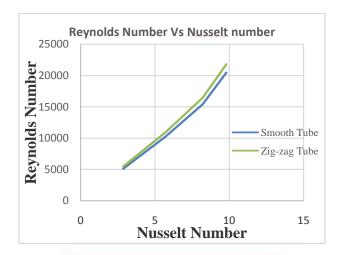


Fig: 3.2 Heat transfer coefficient Vs Reynolds Number

From the Fig. 3.2, it is observed that the heat transfer coefficient increases with increase in Reynolds number. As Reynolds number increases, the water flow will cause more turbulence, so due to which the heat transfer rate will increase. It is observed that the tube with straight riser gives less heat transfer coefficient than with the zigzag riser tubes. zigzag riser tubes create more turbulence in tube which increases the heat transfer coefficient as compared to straight riser tube.

3.3 Effect of Reynolds Number on Nusselt Number

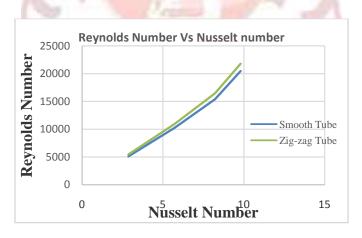


Fig. 3.3 Reynolds Number V/s Nusselt Number

From the Fig. 3.3, it is observed that there is increase in Nusselt number with Reynolds number. As Reynolds number increases the water flow will cause more turbulence due to which heat transfer rate will increase. As heat transfer coefficient is directly proportional to Nusselt number, Nu=hDh/K i.e increase in heat transfer coefficient increases the Nusselt number. From graph it is observed that maximum Nusselt number is obtained for zigzag riser tube as compared to straight riser tube. Minimum Nusselt number is obtained for straight riser tube without any modification.

3.4 Effect of Reynolds Number on Friction Factor

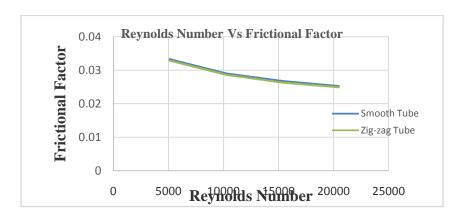


Fig.3.4 Friction factor Vs Reynolds Number

From the Fig.3.4 it is observed that as Reynolds increases there is decrease in friction factor is observed. This is because friction factor is inversely proportional to the velocity. So as velocity increases (i.e. Reynolds number increases) friction factor will decrease.

3.5. Computational Analysis By Ansys

Heat Flux=Heat Transfer Rate Per Unit Area for straight riser tube at 2 LPM =Q /As = 110.28/0.36=306.33 W/m2

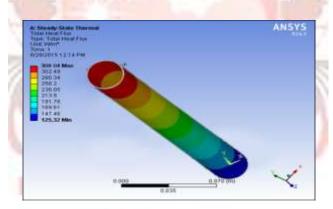


Fig. 3.5 Heat Flux For A straight riser Tube.

Heat Flux=Heat Transfer Rate Per Unit Area for zigzag riser tube at 2 LPM = Q /As = 121.33/0.36=337.33 W/m2

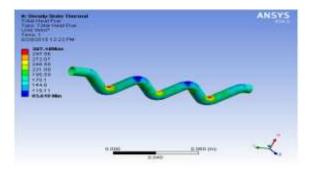


Fig. 3.6 Heat Flux For Zigzag Tube With 30 Degree Angle

Heat Flux=Heat Transfer Rate Per Unit Area for zigzag riser tube at 2 LPM = Q /As = 121.33/0.36=337.33 W/m2

Fig. 3.7 Heat Flux For Zigzag Tube With 35 Degree Angle

Heat Flux=Heat Transfer Rate Per Unit Area for zigzag riser tube at 2 LPM = Q /As = 121.33/0.36=337.33 W/m2

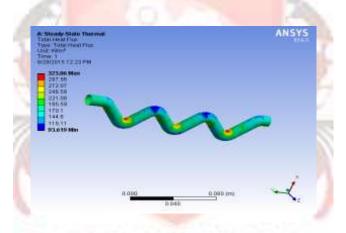


Fig. 3.8 Heat Flux For Zigzag Tube With 40 Degree Angle

Heat Flux=Heat Transfer Rate Per Unit Area for zigzag riser tube at 2 LPM = Q /As = 121.33/0.36=337.33 W/m2

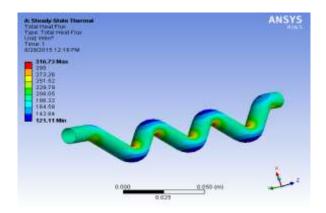


Fig. 3.7 Heat Flux For Zigzag Tube With 45 Degree Angle

4. Conclusion

Experimental investigations have been carried out on straight riser tube and zigzag riser tube on heat transfer enhancement, friction factor. From the graphs plotted, following conclusions are made.	
	The heat transfer in tube with zigzag riser tube is found to be more as compared to straight riser tube.
The inci	rease in relative heat transfer coefficient of water for zigzag riser tube is 19.60 % higher than straight
riser tube.	
	The relative decrese in friction factor for zigzag riser tube is 1.39 % than straight riser tube.
	The relative increase in Reynolds number for zigzag Riser tube is 6.31% higher than straight riser
tubes.	
□ tubes.	The relative increase in Nusselte number for zigzag riser tubes is 18.91% higher than straight riser
	From the Ansys image of thermal analysis for straight riser tube it is found that the maximum design x is found to be 306.33 W/m2 for straight riser tube and 327.15 W/m2 for zigzag riser tube with 30 angle respectively. So the maximum value of heat flux will be obtain in zigzag riser tube case.
	The Heat Flux experimental value are found to be 306.33 W/m2 for straight riser tube.
By Computation Analysis it is found to be as follows.	
•	At 30 Degree Zigzag riser tube 327.15 W/m2
•	At 35 Degree Zigzag riser tube 324.64 W/m2
•	At 40 Degree Zigzag riser tube 323.06 W/m2
•	At 45 Degree Zigzag riser tube 316.73 W/m2
□ easy for	From the manufacturing point of view 35 degree angle is safe and leakages problem is not induce and welding and gives optimum heat flux value.

REFERENCES

- [1] Hanane Dagdougui, Ahmed Ouammi, Michela Robba, Roberto Sacile (2011), 630–638, Thermal analysis and performance optimization of a solar water heater flat plate collector Science Direct (www.elsevier.com/locate/rser.)
- [2] Raj Thundil Karuppa, Pavan P. and Reddy Rajeev D. (2012), Vol. 1(4), 1-8, Experimental Investigation of a New Solar Flat Plate Collector, Research Journal of Engineering Sciences ISSN 2278 9472.
- [3] Pillai IR, Banerjee R. Methodology for estimation of potential for solar water heating in a target area. Sol Energy 2007;81:162–72.

- [4] I. Budihardjo, G.L. Morrison, (2008), 83 (2009) 49–56, Performance of water-in-glass evacuated tube solar water heaters, www.sciencedirect.com.
- [5] H.Vettrivel, P.Mathiazhagan, Volume- 1, Issue- 5, Nov-2013, Thermal performance optimization of flat plate solar water heater collector using MATLAB, International Journal of Mechanical and Production Engineering, ISSN: 2320-2092, vettri9994@gmail.com.
- [6] A. Alarez, O. Cabeza, M. Muniz, L. Varela, Experimental and Numerical Investigation of a Flat-Plate Solar Collector, Energy, 35 (2010), 3707-3716, www.elsevier.com.
- [7] M. Rodriguez-Hidalgo, P. Rodriguez-Aumente, A. Lecuona, G. Gutierrez-Urueta, and R. Ventas, Flat Plate Thermal Solar Collector Efficiency: Transient Behavior Under Working Conditions. Part I: Model Description and Experimental Validation, Applied Thermal Engineering, 31 (2011) 2394-2404, www.elsevier.com.
- [8] D. Rojas, J. Beermann, S. Klein, and D. Reindl, Thermal Performance Testing of Flat Plate Collectors, Solar Energy 82 (2008) 746-757, www.elsevier.com.
- [9] M. Thirugnanasambandam, S. Iniyan, and R. Goic, A Review of Solar Thermal Technologies, Renewable and Sustainable Energy, Reviews 14 (2010) 312-322.
- [10] S. Kalogirou, Solar Thermal Collectors and Applications, Progress in Energy and Combustion Science 30 (2004) 231-295.
- [11] E. Andersen and S. Furbo, Theoretical Variations of the Thermal Performance of Different Solar Collectors and Solar Combi Systems as Functions of the Varying Yearly Weather Conditions in Denmark, Solar Energy 83 (2009) 552-565.

E-ISSN NO.2349-0721

- [12] K.R. Anderson, S. Hill, C. Selerberg, E. Guiterez, Feb. 2014, Vol. 4 Iss. 1, PP. 31-37, Experimental Study of Sunearth Flat Plate Solar Collector. kranderson1@csupomona.edu.
- [13] Arun Venu, Arun P,(2013),Vol.3, Simulation Studies on Porous Medium Integrated Dual Purpose Solar Collector,IJRER, arunvenu5213@gmail.com, arun.p@nitc.ac.in.
- [14] M.Sridharan, N.Prasanna, E.SivaPrakash, R.VaradhaRajan, Volume 3, Special Issue 3, Experimental Investigation on Series Solar Flat Plate Collectors with Variable Mass Flow Rates, International Journal of Innovative Research in Science, Engineering and Technology.
- [15] Madhukeshwara. N1, E. S. Prakash, Volume 3, Issue 1, 2012 pp.99-108, An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings, www.IJEE.IEEFoundation.org.

International Engineering Journal For Research & Development

E-ISSN No:2349-0721

Volume 2 Issue 5

- [16] P. Sivakumar, W. Christraj, M. Sridharan and N. Jayamalathi, VOL. 7, NO. 1, Jan. 2012 ISSN 1819-6608, Performance Improvement Study Of Solar Water Heating System, ARPN Journal of Engineering and Applied Sciences.
- [17] A. Álvarez, M. Baz, O. Cabeza, J.L. Ferrín, M.C. Muñiz and L.M. Varela, ISSN 2172-038 X, No.11, March 2013, Experimental and numerical simulation of a storage tank connected to a flat-plate solar collector, International Conference on Renewable Energies and Power Quality.
- [18] K.R. Anderson, S. Hill, C. Selerberg, E. Guiterez, Feb. 2014, Vol. 4 Iss.1, PP. 31-37 Experimental Study of Sunearth Flat Plate Solar Collector, International Journal of Energy Engineering (IJEE).
- [19] Sanjay Kumar Sharma, Dheeraj Joshi, Volume 3, Issue 5, May 2013) 240, Fabrication and Experimental Investigation of V-Through Flat Plate Collector in Hot Climatic Conditions of Rajasthan: A Case Study of Jaipur, International Journal of Emerging Technology and Advanced Engineering.
- [20] Sabae Khaing1, Myat Myat Soe2, Thein Min Htike, Volume 3, Issue 9, September 2014

Numerical Investigation on the Effect of Riser Tube on System Parameters in a Thermosyphon Solar Water Heater, International Journal of Science, Engineering and Technology Research.

- [21] A Hai, Qurat-ul-Ain, To investigate the surface properties for increasing efficiency of solar water heater, 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6).
- [22] Mustafa, Ismail.N.R,eISSN: 2319-1163,pISSN: 2321-7308, Collectors Innovation To Increase Performance Solar Water Heater, IJRET: International Journal of Research in Engineering and Technology.
- [23] KE Amori and NS Jabouri, Vol. 9, No. 1, 1-10, Thermal Performance of Solar Hot Water Systems Using a Flat Plate Collector of Accelerated Risers, TJER 2012.
- [24] H.Vettrivel, P.Mathiazhagan, ISSN: 2320-2092, Volume-1, Thermal Performance Optimization Of A Flat Plate Solar Water Heater Collector Using Matlab,

International Journal of Mechanical and Production Engineering.

- [25] Grigorios Iordanou, Flat-Plate Solar Collectors for Water Heating with Improved Heat Transfer for Application in Climatic Conditions of the Mediterranean Region, School of Engineering and Computing Science Durham University.
- [26] Narasimhe Gowda, B. Putta Bore Gowda, R. Chandrashekar, Vol.4, No.2, 2014, Investigation of Mathematical Modelling to Assess the Performance of Solar Flat Plate Collector, International Journal Of Renewable Energy Research.

- [27] Prof. P.W.Ingle, Dr. A. A. Pawar, Prof. B. D. Deshmukh, Prof. K. C. Bhosale ISO 9001:2008 Certified Journal, Volume 3, Issue 4, April 2013,CFD Analysis of Solar Flat Plate Collector, International Journal of Emerging Technology and Advanced Engineering Website: www.ijetae.com.
- [28] Soteris, A. Kalogirou, Progress in Energy and Combustion Science 30 (2004) 231–295, Solar thermal collectors and applications, www.elsevier.com/locate/pecs
- [29] E. Shojaeizadeh, F. Veysi, T. Yousefi, F. Davodi, 53 (2014) 218–226, An experimental investigation on the efficiency of a Flat-plate solar collector with binary working fluid: A case study of propylene glycol (PG)—water, www.elsevier.com/locate/etfs.
- [30] Ramesh Tiwari Dr. A.R.Jaurkar, Issn:2348-4918 Volume :01 Issue 03 Paper Id-Ijierm-I- I I I -1235 ,June 2014,Experimental Study Of Solar Water Heater By Using Different Riser Tubes In A Flat Plate Collector,International Journal Of Innovation In Engineering Research & Management.
- [31] L.M. Ayompe, A. Duffy, Applied Thermal Engineering 58 (2013) 447e454, Analysis of the thermal performance of a solar water heating system with flat plate collectors in a temperate climate, www.elsevier.com/locate/apthermeng.
- [32] Rajakrishnamoorthy.P, Alexander.R and Suthan.C,Vol. 1 Issue 2, April 2014. ISSN 2348 7968,Experimental Investigation of Integrated Collector Storage Solar Water Heater, IJISET-International Journal of Innovative Science, Engineering & Technology,www.ijiset.com.
- [33] Hossein Chaji, Yahya Ajabshirchi, Esmaeil Esmaeilzadeh, Modern Applied Science; Vol. 7, No. 10; 2013 ISSN 1913-1844 E-ISSN 1913-1852, Experimental Study on Thermal Efficiency of Flat Plate Solar Collector Using TiO2/Water Nanofluid, Published by Canadian Center of Science and Education.
- [34] R. Herrero Martín, A. García Pinar, J. Pérez García, Experimental heat transfer research in enhanced flatplate solar collectors, World renewable energy congress 2011-swedon.
- [35] Arun Venu, Arun P, Vol.3, No.1, 2013, Simulation Studies on Porous Medium Integrated Dual Purpose Solar Collector, International Journal Of Renewable Energy Research.
- [36] B. N. Mankar, R. S. Shelke, Vol. 4 Issue 05, May-2015, Experimental Investigation of Flat Plate Solar Water Collector by Flow Pulsation and Metal Blocks, International Journal of Engineering Research & Technology (IJERT).